Weather Forecasting

Prediction in the natural world

Many aspects of Weather Forecasting

- The science of meteorological prediction;
- The psychology of forecasting;
- The challenge of communication.

Observing the Weather

- All science starts with data
- Meteorology proper started with instrumentation
\square Wind speed and direction (very ancient)
\square Temperature (Renaissance)
\square Air Pressure (Renaissance)
\square Sunshine Duration (Victorian)
\square Rainfall Amounts (Victorian)
\square Quantitative wind measurement (Victorian)

The Equations of the Atmosphere

GAS LAW (Boyle's Law and Charles' Law.)

Relates the pressure, temperature and density

CONTINUITY EQUATION

Conservation of mass; air neither created nor distroyed WATER CONTINUITY EQUATION

The Primitive Equations

Conservation of water (liquid, solid and gas) EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the pressure gradient, Coriolis force and friction THERMODYNAMIC EQUATION
Determines changes of temperature due to heating or cooling, compression or rarifaction, etc.

Seven equations; seven variables ($u, v, w, \rho, p, T, q)$.

$$
\begin{gathered}
\frac{d u}{d t}-\left(f+\frac{u \tan \phi}{a}\right) v+\frac{1 \partial p}{\rho \partial x}+F_{x}=0 \\
\frac{d v}{d t}+\left(f+\frac{u \tan \phi}{a}\right) u+\frac{1 \partial p}{\rho \partial y}+F_{y}=0 \\
p=R \rho T \\
\frac{\partial p}{\partial z}+g \rho=0 \\
\frac{d T}{d t}+(\gamma-1) T \nabla \cdot \mathbf{V}=\frac{Q}{c_{p}} \\
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \mathbf{V}=0 \\
\frac{\partial \rho_{w}}{\partial t}+\nabla \cdot \rho_{w} \mathbf{V}=[\text { Sources }- \text { Sinks }] \\
\text { Seven equations; seven variables }\left(u, v, w, p, T, \rho, \rho, \rho_{w}\right) .
\end{gathered}
$$

Deterministic Forecasting

- Starting from here (the "Synoptic Analysis") develop a picture of how the Weather Systems will evolve over time.
- An underlying narrative which then dictates the "experience" of weather at any one location.
- This was the dominant approach to weather forecasting up until the last 20 years
- Computing approach ("Numerical Weather Prediction") brought tremendous improvements in weather forecasting - could now issue reasonably accurate forecasts for 5 or 6 days ahead.
- BUT - still significant uncertainties.

Probabilistic Forecasting

- Try to acknowledge, and get some feel for, the uncertainties underlying the weather forecast.
- Why can't we make perfect forecasts?
- Limited Data
- Inaccurate Data
- Inability to rigorously "solve" the equations
- Questions of scale..
- Ensemble Forecasting
- Use this approach to get some idea of the envelope of possibilities
- How likely are these possibilities to actually occur?

Why are forecasts sometimes wrong?

Initial condition uncertainties

- Lack of observations
- Observation error
- Limitations of the data assimilation

Model uncertainties

- Limited resolution
- Parameterisation of physical processes

The atmosphere is chaotic

- small uncertainties grow to large errors (unstable flow)
- small scale errors will affect the large scale (non-linear)
- error-growth is flow dependant

What is an ensemble?

A set of forecasts run from slightly different initial conditions to account for initial uncertainties

The forecast model also contains approximations that can affect the forecast evolution

The ensemble of forecasts provides a range of future scenarios consistent with our knowledge of the initial state and model capability

Ensemble forecasts

Ensemble: how do we generate the initial uncertainties?
Combination of 2 types of perturbations
Ensemble of data assimilations (EDA)
$>$ Randomly perturbed observations and SST fields
$>$ Run 10 independent data assimilation cycles

Singular vectors: perturbations that grow quickly over the first 48 hours of the forecast

Best approach given limited available computer resources

Model grids

HIGH RES (9km)

ENSEMBLE (32 km)

Ensemble forecasts

ECMWF Ensemble mean and spread

Monday 11 October 2010 12UTC ECMMF Forecast $t+120$ VT: Saturday 16 October 201012 UTC Mean sea level pressure (MSLP) Deterministic Forecast and Standard Deviation (shaded)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
20

ECMWF Probabilities for 24 h precipitation > 1 mm

Monday 7 October 2013 ooUTC QECMWF Forecast probability t+o96-120 VT: Friday 11 October 2013 OoUTC-Saturday 12 October 2013 ooUTC Surface: Total precipitation of at least 1 mm

ECMWF Tropical cyclone tracks

Total Precipitation ($\mathrm{mm} / 6 \mathrm{~h}$)

$$
77
$$

77
$7 \quad 7 \quad 8 \quad 9$

10 m Wind Speed (m / s)

2 m Temperature $\left({ }^{\circ} \mathrm{C}\right.$) reduced to 7 m (station height) from 18 m (HRES) and 33 m (ENS)
 Feb
2017

费:
HIbh Resolutton (8 km)

ENSgramor what are all those boxes?

- On the ENSgram you can see: ENS members, Control forecast (red) and HRES forecast (black)
- Values of the parameters are ordered increasingly

ENSgram
or what are all those boxes?

Total Precipitation ($\mathrm{mm} / 6 \mathrm{~h}$)

$$
77
$$

77
$7 \quad 7 \quad 8 \quad 9$

10 m Wind Speed (m / s)

2 m Temperature $\left({ }^{\circ} \mathrm{C}\right.$) reduced to 7 m (station height) from 18 m (HRES) and 33 m (ENS)
 Feb
2017

费:
HIbh Resolutton (8 km)

Communicating uncertainty

All forecasts have errors

It can be important to know the uncertainty in a forecast (what else could happen? what is the worst possibility?)

This is not a new idea

- Forecasters are used to adjusting their forecast with their experience of model errors (flow dependence, forecast range dependency)
- Inconsistency of the forecasts (in time, from one model to the other) were used as indication of the (un-)predictability of scenarios

Ensembles provide an explicit, detailed representation of model

 uncertainties, and potential of unusual eventsUncertainty information to public

Communicating Uncertainty / Probability

- It is difficult to think in a probabilistic manner
- People (meaning us!) like a narrative, a story
- Nightly weather broadcast usually follows this pattern
- Has to be understandable and "memorable" to be of any value
- Helps to put context around each person's experience of the weather
- We are programmed to look for cause and effect
- Random effects are something we don't easily assimilate

Probabilistic elements in the weather

- Showers are probabilistic in nature
- Can predict most likely places and times
- Cannot predict exact places and times with any precision
- Hail/Sleet showers are a real hazard on the roads
- Clouds... and therefore sunshine
- Fog
- Wind Gusts
- Small, intense, low pressure systems
- Tropical Cyclones / Hurricanes
- Tornados

More deterministic elements in the weather

- The path of large weather systems
- Wind speed and direction (unless wind is extreme)
- Temperatures
- High Pressure Systems
- Seasonal patterns (e.g. the monsoon)

Human elements in forecasting

- Optimist or pessimist?
- Can be coloured by recent experience
- Case study in Switzerland:
- Threatening situation - thunderstorm warning issued - no thunderstorms criticism...
- One week late - similar threatening situation - no warning issued - thunderstorms occurred, leading to deluge and bridges washed away...
- Forecasters must try to avoid ingrained biases, experiental biases.
- Probabilistic forecasts help to give a "reality check"

